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1. Introduction and summary

In the study of stationary, spherically symmetric solutions to Einstein’s gravity, possibly

coupled to Maxwell and massless scalar fields, a useful trick is to first dimensionally reduce

the action along the time-like Killing vector, and then only to enforce spherical symmetry

of the three-dimensional spatial slices [1]. The advantage of this two-step procedure is that

three-dimensional gauge fields arising in the reduction can be dualized after the first step

into pseudo-scalars, leading to a non-linear sigma model with target space M∗
3, coupled to

three-dimensional gravity. The second step leads to a one-dimensional dynamical system

describing the geodesic motion of a fiducial particle on the cone R
+

⋉ M∗
3. The factor

R
+ describes the radius of the two-sphere, while M∗

3 is an analytic continuation of the

moduli space M3 arising in the usual Kaluza-Klein reduction along a space-like direction,

leading to a metric with indefinite signature. In many cases, M∗
3 has a larger group G3

of non-compact symmetries beyond those already manifest in four dimensions (G4), which

may allow to integrate the geodesic motion explicitly.

The simplest examples where this procedure has been useful are Schwarzschild-NUT

black holes in pure Einstein gravity, which correspond to geodesics on the Poincaré upper

half plane Sl(2, R)/SO(2) [2]. The Sl(2, R) action on this space, often known as Ehlers’

symmetry, relates static solutions with solutions with non-zero NUT charge [2, 3]. Sim-

ilarly, Reissner-Nordström-NUT black holes in Einstein-Maxwell supergravity correspond

to geodesics on SU(2, 1)/Sl(2)×U(1) [4, 5] (see also the review [6] on this and other issues

to be discussed below). The reduction of four-dimensional Einstein-Maxwell theories cou-

pled to scalars valued in a symmetric space G4/K4 was worked out in [1, 7], leading to a

non-linear sigma model on G3/K3, whose relation to G4/K4 can be most easily expressed

using the language of Jordan algebras [8]. These theories are bosonic truncations of a spe-

cial class of N = 2 supergravity theories with symmetric moduli spaces [9]. More generally,
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the reduction of N = 2 supergravity coupled to nV Abelian vector multiplets leads to a

non-linear sigma model on a para-quaternionic-Kähler manifold M3 of dimension 4nV +4,

known as the c∗-map of the four-dimensional moduli space M4 [10 – 12]. For a particular

class of geodesics, corresponding to BPS black holes, the motion can be fully integrated

(both classically and quantum mechanically) [13], and reproduces the usual attractor flow

equations controlling the radial evolution of the scalars on M4 [12, 6].

In all of these examples, the starting point was Einstein-Hilbert gravity in four di-

mensions coupled to abelian gauge fields and scalar fields, with canonical two-derivative

kinetic terms for all fields. In general however, there are higher-derivative corrections to

the four-dimensional effective action coming from integrating out massive modes in the full

quantum theory, suppressed by inverse powers of the Planck mass mP . A prime example

are the R2 corrections, which play an essential role in accounting for the microscopic en-

tropy of “small black holes”, whose horizon is singular in the two-derivative approximation:

such corrections become dominant near the singularity, and lead to a smooth near-horizon

geometry in agreement with thermodynamical expectations [14 – 19, 6]. Higher derivative

corrections are also important for regular black holes when trying to account for finite size

corrections to the thermodynamical limit.

The main goal of this work is to analyze the effect of such higher derivative gravita-

tional corrections at the level of the dimensional reduction from four space-time dimensions

to one radial dimension. Our approach is also suitable for analyzing higher-derivative cor-

rections to the usual Kaluza-Klein reduction from four to three space-time dimensions, as

we discuss further below. On general grounds, one expects higher-derivative corrections

to the geodesic motion on R
+ ×M3, preserving only the symmetries which originate from

gauge and diffeomorphism invariance in four dimensions. As usual when working beyond

two-derivative order, the exact form of the higher-derivative corrections is largely ambigu-

ous due to the freedom of performing field redefinitions. A preferred frame is one in which

only powers of first derivatives of the scalars appear, as it removes spurious modes found

in other schemes [16, 17], and is amenable to canonical quantization by standard means.

Moreover, it is also the natural frame in which to assess the existence of hidden symmetries,

as will become clear shortly.

As the first part of our investigation, we consider pure Einstein gravity in four di-

mensions, with an arbitrary combination of the three curvature-squared invariants, and

study its dimensional reduction on stationary spherically symmetric geometries. We show

that all higher-derivative corrections in the one-dimensional Lagrangian can be removed by

suitable field redefinitions. This could be anticipated from the fact that R2 corrections in

four dimensions can always be related to the Gauss-Bonnet density by an appropriate field

redefinition of the four-dimensional graviton [20, 32]. This is no longer true in the case of

Einstein gravity coupled to a scalar field φ, which we study next: allowing the coefficients

of the R2 terms to depend on φ, we find that there exists a frame where only powers of

first derivatives of the fields appear (with always at least one power of the first derivative

of φ, in agreement with the triviality of R2 corrections with constant coefficients). Finally,

we perform a similar analysis for Einstein gravity coupled to a single Maxwell field with

general four-derivative couplings (but restricting for simplicity to the static case, rather
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than stationary). We find that higher-derivatives cannot in general be eliminated by field

redefinitions, but that a first order scheme can still be found. We note that extremal so-

lutions exist only when the coefficient of (F 2
µν)2 vanishes, which may originate from the

possibility of supersymmetrizing the higher-derivative corrections.

As indicated above, our analysis also addresses the effect of higher-derivative correc-

tions on the usual Kaluza-Klein reduction on a space-like direction, after analytic con-

tinuation of the scalar fields in the Maxwell directions. Of course, since we perform the

reduction in the spherically symmetric sector only, the higher-derivative corrections in

three-dimensions are only determined up to some tensor structure ambiguities.

In this context, an interesting question is whether higher-derivative interactions can

be consistent with the extended non-compact symmetries (G3) that were present at tree-

level, or at least with a discrete subgroup thereof. This question was raised long ago

in the context of T-duality [21, 22], where it was found that α′ corrections to the T-

duality rules could be reabsorbed by field redefinitions, leaving an action invariant under

R → 1/R. In the context of U-duality, the same question arises as to whether higher-

derivative interactions, beyond the already well understood gravitational sector, preserve

the duality symmetry G3(Z) = E8(8)(Z) of M-theory compactified on a eight-torus [23, 24].

Since an Sl(2, R) subgroup of G3 originates in the Ehlers symmetry of the reduction of

four-dimensional Einstein gravity to three dimensions, we can investigate a toy version of

this problem, and ask whether a discrete subgroup of the Ehlers symmetry can be preserved

by R2 corrections. For pure Einstein gravity, the answer to this question is trivial since

such corrections can always be removed by field redefinitions. We therefore address this

problem in the context of Einstein-Liouville theory, where such corrections are non-trivial,

and break the Ehlers symmetry at order α′. Having found a frame where only powers of

the first order derivatives of the scalar fields appear, it is straightforward to restore the

invariance under a discrete subgroup Sl(2, Z) of Ehlers symmetry: after upon expressing the

Lagrangian in powers of the right-invariant form p in Sl(2)/U(1) and its complex conjugate

p̄, with weight one under U(1), it suffices to replace the coefficient of any term proportional

to pmp̄n by a generalized Eisenstein series fs,k=m−n with U(1) weight k = m − n, of the

type considered in [25, 26]. For s = 1, the case relevant for R2 corrections, fs,k can in

fact be expressed in terms of ordinary almost holomorphic modular forms. The difference

between the Sl(2, Z)-invariant and the original dimensionally reduced Lagrangian can be

attributed to Taub-NUT gravitational instantons, as well as loops of gravitons running

along the compact circle. Thus, we give a precise realization of the general expectations

expressed in [23, 24].

Finally, a third motivation for our work is to further our understanding of the du-

ality between hypermultiplets and vector multiplets in three dimensions beyond the two-

derivative level. In type II string theory compactified on a Calabi-Yau three-fold Y times a

circle, T-duality along the circle exchanges the hypermultiplet and vector multiplet moduli

spaces of the type IIA and type IIB theories, respectively. Since the hypermultiplet sector

is independent of the size of the circle, and since the metric for the three-dimensional vector

multiplets is given by the c-map of the four-dimensional vector multiplet metric, this im-

plies that, at tree-level, the four-dimensional hypermultiplet space is given by the c-map of
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the four-dimensional vector multiplet space of the dual theory [10, 11]. The hypermultiplet

metric is further corrected by D-instantons, dual to black holes winding around the circle

on the vector-multiplet side. It is natural to guess that the same argument should relate

the R2F 2h−2 “F-term” higher derivative corrections on the vector multiplet side in four

dimensions to the (∇2S)2(∇Z)2h−2 “F̃ -term” higher-derivative corrections on the hyper-

multiplet side. Here (S,Z) denotes the two chiral fields of the universal hypermultiplet [27].

In section 4, we give a preliminary analysis of this problem in the simplest case with h = 1

and (nV , nH) = (0, 1), and conclude that the identication between F1 and F̃1 is more subtle

than commonly thought.

The organization of this paper is as follows. In section 2, we discuss the reduction

of four-dimensional Einstein, Einstein-Liouville and Einstein-Maxwell gravity with four-

derivative corrections to one radial dimension, and find suitable field redefinitions such

that the resulting Lagrangian involves only powers of first derivatives of the fields. In

section 3, we discuss the restoration of Ehlers symmetry via instanton corrections. In

section 4, we give a preliminary discussion of the relation between the higher-derivative

F-term couplings F1 and F̃1 on the vector and hypermultiplet branch in three dimensions.

As this work was finalized, we received [31], which has some overlap with the results

in section 3. Note added: After the first version of this paper appeared on the archive, the

authors of [32] pointed out that R2 corrections in pure Einstein gravity can be completely

removed by field redefinitions, not just in the sector with flat sections as we erroneously

claimed. In this revised version, we extend our discussion to the case of Einstein-Liouville

gravity, where R2 corrections are non-trivial and do break the Ehlers symmetry.

2. Spherical reduction and higher-derivative terms

2.1 Pure Einstein gravity

In this section, we study pure gravity in four dimensions, with four-derivative corrections

to the Einstein-Hilbert action:

S =

∫

d4x
√−g4

[

R(4) + α ([R(4)
µν ]2 − [R(4)]2) + β [R(4)]2 + γ R2

GB + o(α′)
]

(2.1)

and o(α′) denotes further higher derivative corrections derivatives, which we assume to

be negligible compared to the four-derivative interactions displayed in (2.1). Throughout

this paper, we work perturbatively in (α, β, γ) ∼ α′. Since the Gauss-Bonnet density

R2
GB = [R

(4)
µνρσ]2 − 4[R

(4)
µν ]2 + [R(4)]2 is a total derivative in four dimensions, we set γ = 0

in this section. The action (2.1) can then be specialized to the Riemann tensor squared

[R
(4)
µνρσ ]2 or the Weyl tensor squared [W

(4)
µνρσ]2 forms by setting α = 3β/4 or α = β/6,

respectively.

In the presence of a time-like Killing vector, the four-dimensional metric may be written

as

ds4 = −e2U (dt + ω)2 + e−2Uds2
3 (2.2)

where the scalar U , Kaluza-Klein one-form ω and spatial three-dimensional metric ds2
3 are

independent of the time coordinate t. The action (2.1) may then be reduced along the
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ansatz (2.2), leading to

S3 =

∫

d3x
√

g3

[

R(3) − 2∂iU
2 +

1

2
e2UF 2

ij + O(α′)

]

(2.3)

where Fij = ∂iωj − ∂jωi. The choice of powers of eU in (2.2) ensures that the three-

dimensional action is obtained in the Einstein frame. The terms O(α′) coming from the

reduction of the four-derivative terms in (2.1) are somewhat cumbersome to obtain. For

simplicity, and motivated by application to black holes, we further restrict to spherically

symmetric solutions,

ds2
4 = −e2U (dt + k cos θ dφ)2 + e−2U

[

N2(ρ) dρ2 + r2(ρ) (dθ2 + sin2 θ dφ2)
]

(2.4)

The integer k, often known as the NUT charge, describes the first Chern class of the

Kaluza-Klein gauge field over the two-sphere at infinity; it can be dualized to a three-

dimensional scalar σ by adding a Lagrange multiplier kσ′ to the action1, which ensures

that k is a constant of motion. It is worth emphasizing that the ansatz (2.4) follows

entirely from the assumed isometries, in particular the Kaluza-Klein connection k cos θ dφ

is unaffected by higher-derivative corrections to the Einstein-Hilbert action, and σ′ will

continue to be related to k by Legendre transform. The lapse variable N(ρ) can be viewed

as an einbein along the radial direction ρ, and ensures that the resulting one-dimensional

action is invariant under diffeomorphisms of ρ. For convenience we shall often set N(ρ) = 1,

the dependence on N can be reinstated whenever needed by demanding reparametrization

invariance.

It is now straightforward, if tedious, to compute the curvature invariants of the met-

ric (2.4), and integrating over the sphere coordinates θ, φ to obtain the one-dimensional

Lagrangian. At two-derivative order, we find the familiar tree-level result

L0 = 2N

[

(

r′

N

)2

− r2

(

U ′

N

)2

+
e4U

4r2
k2 + 1

]

+ kσ′ (2.5)

=
2

N

[

r′2 − r2

(

U ′2 +
1

4
e−4Uσ′2

)

+ N2

]

(2.6)

where in the second line we have performed the Legendre transform over the NUT charge

k. The term in bracket is recognized as the metric on the cone R
+ × Sl(2, R)/U(1) where

τ = σ + ie2U (2.7)

is the standard coordinate on the upper half-plane. Stationary, spherically symmetric

solutions of Einstein gravity in four dimensions are therefore described by the geodesic

motion of a fiducial particle with unit mass on R
+×Sl(2, R)/U(1). The Sl(2, R) symmetry

acting on τ by fractional linear transformations

τ → aτ + b

cτ + d
, (2.8)

1In the following the primes denote ρ-derivatives.
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is Ehlers’s symmetry mentioned in the introduction.

Including the four-derivative interactions, and setting N = 1, we arrive at L = L0 +L1

where

L1 = (−2α + 4β)
e2U

r2
+ (8α − 8β)e2U U ′2 + (−4α + 8β)e2UU ′′ (2.9)

+(4α − 8β)
e2U r′2

r2
+ (−8α + 16β)

e2U r′U ′

r
+ (12α − 16β)

e2U r′′

r

+(−10α + 16β)e2U r′′2 + (−2α + 4β)
e2Ur′4

r2
+ (16α − 32β)e2U r′r′′U ′

+(−8α + 24β)e2U r′2U ′2 + (8α − 16β)e2U rr′U ′3 + (4α − 8β)e2Ur2U ′2U ′′

+(−12α + 16β)
e2U r′2r′′

r
+ (8α − 16β)e2U rr′′U ′′

+(4α − 8β)e2U r′2U ′′ + 16βe2U rr′U ′U ′′

+(−8α + 16β)e2U rr′′U ′2 + (8α − 16β)
e2U r′3U ′

r
+ 2βe2Ur2U ′4 + 4βe2Ur2U ′′2

+(2α − 4β)k2 e6Ur′′

r3
+ (2α + 4β)k2 e6Ur′U ′

r3
+ (α + 2β)k2 e6UU ′′

r2

+(2α − 2β)k2 e6UU ′2

r2
+ 2βk2 e6U

r4
− 2βk2 e6Ur′2

r4
+

(

1

2
α +

1

4
β

)

k4 e10U

r6

It is worth noting that L0 and L1 are homogeneous, of degree 0 and −2 respectively, under

the global symmetry

ρ → e2l ρ , U(ρ) → U(ρ) + l , r(ρ) → e2l r(ρ) , k → k (2.10)

This reflects the homogeneity of the Einstein-Hilbert and R2 terms, respectively, under

global rescaling gµν → e2lgµν .

The Lagrangian L should be supplemented by the Hamiltonian constraint, or Wheeler-

De Witt equation, coming from the equation of motion of N . The latter can be reinstated

by replacing all derivatives with respect to ρ by covariant derivatives ∇ρ with respect to

the world-line metric γρρ = N2, contracted with appropriate powers of the inverse metric.

This task is greatly simplified if one first performs field redefinitions and integration by

parts such that the resulting action only involve powers of first order derivatives of U(ρ)

and r(ρ). The most general redefinition2 is

δr =

(

−5

2
α + 4β

)

e2Ur′′ + (−α + 2β)e2U r′U ′ + (2α − 4β)e2U rU ′′

+

(

1

4
α − β

)

e2UrU ′2 + x1
e2U

r
+ x2

e2Ur′2

r
+ x3

e6U

r3
k2 (2.11)

δU =

(

3

2
α − 3β

)

e2Ur′2

r2
+

1

2
α

e2Ur′U ′

r
− βe2UU ′′ + y1

e2U

r2
+ y2ǫ

2UU ′2 + y3
e6U

r4
k2

2Additional first-order terms proportional to e2Ur′/r and e2UU ′/r would spoil one-dimensional diffeo-

morphism invariance and are therefore not considered. Moreover, we do not allow for field redefinitions of

k, since k corresponds to a conserved charge.
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where x1, x2, x3, y1, y2, y3 are six arbitrary parameters, which can be chosen at will to

simplify the form of the final Lagrangian. After dropping a total derivative, the Lagrangian

L becomes

L = 2 + 2r′2 − 2r2U ′2 +
e4U

2r2
k2 + kσ′ + (−2α + 4β)

e2U

r2
+ (16α − 24β − 4x1)

e2Ur′2

r2

+(−32α + 48β + 8x1 + 8y1)
e2Ur′U ′

r
+ (16α − 24β − 4x1 − 8y1)e

2UU ′2

+

(

−6α + 28β − 4

3
x2

)

e2Ur′4

r2
+

(

28α − 152

3
β +

8

3
x2

)

e2Ur′3U ′

r

+

(

38

3
α − 112

3
β +

16

3
y2

)

e2Urr′U ′3

+

(

5

3
α +

8

3
β − 8

3
y2

)

e2Ur2U ′4 + (−25α + 60β − 4x2)e
2Ur′2U ′2

+

(

1

2
α +

1

4
β − x3 + 2y3

)

k4 e10U

r6
+ (2β − x1 + 2y1)

e6U

r4
k2

+

(

33

2
α − 32β − x2 − 12x3

)

e6Ur′2

r4
k2 + (−25α + 58β + 24x3 + 16y3)

e6Ur′U ′

r3
k2

+

(

31

4
α − 25β − 4x3 + 2y2 − 24y3

)

e6UU ′2

r2
k2 (2.12)

This may be further simplified by reinstating the einbein N , and making use of the free-

dom to perform field redefinitions of N preserving the property that the Lagrangian only

contains powers of first derivatives of fields:

δN = t1
e2U

r2
+ t2

e2Ur′2

r2
+ t3e

2UU ′2 + t4
e2Ur′U ′

r
+ t5

e6U

r4
k2 (2.13)

The Lagrangian becomes

L = 2 + 2r′2 − 2r2U ′2 +
e4U

2r2
k2 + kσ′ (2.14)

+(−2α + 4β + 2t1)
e2U

r2
+ (16α − 24β − 4x1 − 2t1 + 2t2)

e2Ur′2

r2

+(−32α+48β+8x1+8y1 + 2t4)
e2Ur′U ′

r
+ (16α − 24β − 4x1 − 8y1 + 2t1 + 2t3)e

2UU ′2

+

(

−6α + 28β − 4

3
x2 − 2t2

)

e2Ur′4

r2
+

(

28α − 152

3
β +

8

3
x2 − 2t4

)

e2Ur′3U ′

r

+

(

38

3
α − 112

3
β +

16

3
y2 + 2t4

)

e2Urr′U ′3

+

(

5

3
α +

8

3
β − 8

3
y2 + 2t3

)

e2Ur2U ′4 + (−25α + 60β − 4x2 + 2t2 − 2t3)e
2Ur′2U ′2

+

(

1

2
α +

1

4
β − x3 + 2y3 +

1

2
t5

)

k4 e10U

r6
+

(

2β − x1 + 2y1 +
1

2
t1 + 2t5

)

e6U

r4
k2

+

(

33

2
α − 32β − x2 − 12x3 +

1

2
t2 − 2t5

)

e6Ur′2

r4
k2
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+

(

−25α + 58β + 24x3 + 16y3 +
1

2
t4

)

e6Ur′U ′

r3
k2

+

(

31

4
α − 25β − 4x3 + 2y2 − 24y3 +

1

2
t3 + 2t5

)

e6UU ′2

r2
k2

Remarkably, there exists a unique choice of the field redefinition ambiguities such that L
reduces to its tree-level answer,

x1 =
11

4
α − 5β , x2 = −9

4
α + 7β , x3 =

1

16
(17α − 36β)

y1 = −3

2
α + 3β , y2 = −13

2
α + 13β , y3 =

1

8
(−3α + 2β) , (2.15)

t1 = α − 2β , t2 = −3

2
, t3 = −19

2
α + 16β , t4 = 11α − 16β, t5 =

21

8
α − 6β

We conclude that in the stationary, spherically symmetric sector, R2 corrections to Einstein

gravity can be completely eliminated by field redefinitions. In particular, the Ehlers symme-

try is unbroken at this order. This result could have been anticipated [32] from the fact that,

using field redefinitions of the four-dimensional graviton of the form δgµν = κ1Rµν+κ2gµνR,

the R2 corrections can always be related to the Gauss-Bonnet density, which is a total

derivative. Clearly, higher order corrections such as R4 cannot not be eliminated in the

same fashion. Such terms have been discussed in [31].

2.2 Einstein-Liouville gravity

We now consider Einstein gravity coupled to a scalar field φ, and allow an arbitrary de-

pendence of the R2 couplings in (2.1) on φ,

S =

∫

d4x
√−g

[

R4 +
1

2
(∂φ)2 + α(φ) ([R(4)

µν ]2 − [R(4)]2) + β(φ) [R(4)]2 + γ(φ)R2
GB

]

(2.16)

In particular, the term proportional to the Gauss-Bonnet density is no longer a total

derivative, and we no longer expect to be able to remove all higher derivative corrections

by field redefinitions. In the rest of this section we will refrain from displaying the φ

dependence, and will indicate φ-derivatives with a subscript, e.g. αφ ≡ dα/dφ.

We now proceed as in section 2.1, by first performing field redefinitions and integrations

by parts such that only powers of first derivatives appear in the Lagrangian. The most

general field redefinition of r and U compatible with these requirements is again (2.11),

while the field redefinition of N must be generalized to

δN = t1
e2U

r2
+ t2

e2Ur′2

r2
+ t3e

2UU ′2 + t4
e2Ur′U ′

r
(2.17)

+t5
e6U

r4
k2 + t6e

2Uφ′2 + t7e
2UU ′φ′ + t8

e2Ur′φ′

r

and an extra field redefinition of φ must be introduced,

δφ = (5α − 8β)
e2Ur′φ′

r
+ (−4α + 8β)e2UU ′φ′ + z1

e2U

r2
+ z2e

2Uφ′2 + z3
e6U

r4
k2 (2.18)

– 8 –
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Moreover, all coefficients xi, yi, zi, ti may now depend on φ. The full Lagrangian reads,

after dropping a total derivative:

L = 2 +
1

2
r2φ′2 + 2r′2 − 2r2U ′2 +

e4U

2r2
k2 + kσ′ + (−2α + 4β + 2t1)

e2U

r2

+ (16α − 24β + 2t1 + 2t3 − 4x1 − 8y1) e2UU ′2 + (32α+48β+2t4+8x1+8y1)
e2Ur′U ′

r

+ (16α − 24β − 2t1 + 2t2 − 4x1)
e2Ur′2

r2
+

(

−1

2
t1 + 2t6 + x1 + z1,φ

)

e2Uφ′2

+

(

−12αφ + 16βφ + 2t8 + 4x1,φ +
4

3
x2,φ − 2z1

)

e2Ur′φ′

r

+ (4αφ − 8βφ + 8γφ + 2t7 − 4y1,φ + 2z1) e2UU ′φ′

+

(

5

2
αφ − 4βφ − 1

2
t8 −

4

3
z2

)

e2Ur′φ′3 +

(

−2αφ + 4βφ − 1

2
t7 +

2

3
z2

)

e2UU ′φ′3

+

(

−15

2
α + 12β − 1

2
t2 − 2t6 + x2

)

e2Ur′2φ′2 + (4αφ − 16βφ − 2t8)
e2Ur′3φ′

r

+

(

−15

4
α+7β − 1

2
t3 + 2t6

)

e2Ur2U ′2φ′2 + (−25α + 60β + 2t2 − 2t3 − 4x2) e2Ur′2U ′2

+ (−αφ − 4βφ + 16γφ + 2t8) e2Urr′U ′2φ′ +

(

8α − 14β − 1

2
t4

)

e2Urr′U ′φ′2

+ (−10αφ + 20βφ − 8γφ − 2t7) e2Ur′2U ′φ′ +

(

38

3
α − 112

3
β + 2t4 +

16

3
y2

)

e2Urr′U ′3

+

(

4

3
αφ − 8

3
βφ − 8γφ + 2t7 −

4

3
y2,φ

)

e2UU ′3φ′

+

(

28α − 152

3
β − 2t4 +

8

3
x2

)

e2Ur′3U ′

r
+

(

−6α +
28

3
β − 2t2 −

4

3
x2

)

e2Ur′4

r2

+

(

−1

2
t6 +

1

3
z2,φ

)

e2Ur2φ′4 +

(

5

3
α +

8

3
β + 2t3 −

8

3
y2

)

e2Ur2U ′4

+

(

2β +
1

2
t1 + 2t5 − x1 + 2y1

)

e6U

r4
k2 +

(

−1

2
t5 +

1

2
t6 + x3 + z3,φ

)

e6Uφ′2

r2
k2

+

(

31

4
α − 25β +

1

2
t3 + 2t5 − 4x3 + 2y2 − 24y3

)

e6UU ′2

r2
k2

+

(

−25α + 58β +
1

2
t4 + 24x3 + 16y3

)

e6Ur′U ′

r3
k2

+

(

33

2
α − 32β +

1

2
t2 − 2t5 − x2 − 12x3

)

e6Ur′2

r4
k2

+

(

−9

2
αφ + 8βφ − 4γφ +

1

2
t8 + 4x3,φ − 4z3

)

e6Ur′φ′

r3
k2

+

(

αφ − 4βφ + 10γφ +
1

2
t7 − 4y3,φ + 6z3

)

e6UU ′φ′

r2
k2

+

(

1

2
α +

1

4
β +

1

2
t5 − x3 + 2y3

)

e10U

r6
k4

– 9 –
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While there is no longer any choice of the coefficients xi, yi, zi, ti which removes all higher

derivative corrections, enforcing the same field redefinitions as in (2.15) (with all coeffi-

cients being now functions of φ) ensures that all higher derivative contributions become

proportional to φ′. This leaves six field redefinition ambiguities, which may be used e.g. to

eliminate terms of cubic and quartic order in U ′ and k:

z1 = −8γφ , z2 = −3

4
(αφ − 2βφ + 2γφ),

z3 = −2γφ , t6 = −1

2
β − z3,φ, (2.19)

t7 = −5αφ + 10βφ + 4γφ , t8 =
1

2
αφ + 2βφ − 8γφ

Finally, we perform the Legendre transform over k, obtaining

L = 2 +
1

2
r2φ′2 + 2r′2 − 2r2U ′2 − 1

2
e−4Ur2σ′2 (2.20)

+

(

9

4
α − 5β − 4γφφ

)

e2Uφ′2 +

(

1

4
β − 1

4
αφφ +

1

2
βφφ

)

e2Ur2φ′4

+

(

13

4
αφ − 7βφ

)

e2Urr′φ′3 + (−9α + 20β − 4γφφ)e2Ur′2φ′2 + 16γφ
e2Ur′3φ′

r

+

(

5

2
α − 6β

)

e2Urr′U ′φ′2 − 16γφe2Ur′2U ′φ′ + (α − 2β + 4γφφ)e2Ur2U ′2φ′2

+

(

−1

4
α +

1

2
β − γφφ

)

e−2Ur2φ′2σ′2

In contrast to the pure gravity case, the higher-derivative terms now break the tree-level

Ehlers symmetry (2.8) explicitly3. In section 3, we will show how the symmetry under a

discrete subgroup of SL(2, R) can be restored by including the contribution of Taub-NUT

instantons.

2.3 Einstein-Maxwell gravity

We now study the dimensional reduction of Einstein gravity coupled to an abelian gauge

field A, in the presence of higher derivative corrections of the form:

S =

∫

d4x
√−g

[

R4 −
1

4
F 2

µν + α ([R(4)
µν ]2 − [R(4)]2) + β [R(4)]2 (2.21)

+z1 FµνFνρFρλFλµ + z2 (F 2
µν)2 + z3 ∇µF νρ∇µFνρ + z4 R (Fµν)2 + o(α′)

]

where Fµν = ∂µAν − ∂νAµ. As before, we restrict to stationary spherically symmetric

configurations of the form (2.4).

At two-derivative order, it is known that the reduced Lagrangian describes the geodesic

motion of a fiducial particle on (a real cone over) the dimension 4 symmetric space

3Strictly speaking, we cannot rule out that the S-matrix computed from the Lagrangian (2.20) preserves

Ehlers symmetry, although we find this possibility very unlikely.
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SU(2, 1)/Sl(2)×U(1) [4 – 6]. The four scalars correspond to the scalar U , the time compo-

nent ζ of the Maxwell field A4, the pseudo-scalar ζ̃ dual to the reduced Maxwell field Ai,

and the NUT potential σ dual to the Kaluza-Klein connection ωi. Translations along the

three axionic scalars ζ, ζ̃, σ are generated by three conserved charges q, p, k corresponding

to the electric, magnetic and NUT charges, respectively; they satisfy an Heisenberg alge-

bra [p, q] = −2k, as a result of the non-trivial fibration of the σ direction over the (ζ, ζ̃)

plane. For simplicity, we shall restrict to static configurations with vanishing NUT charge,

k = 0. This allows us to express the electromagnetic field-strength directly in terms of the

conserved charges p, q,

F = p sin θ dθ ∧ dφ + i q
e2UN

r2
dt ∧ dr (2.22)

The invariants are then

√−g4F
2
µν = 2

e2UN

r2
(p2 + q2) (2.23)

√−g4(F
2
µν)2 = −2

e6UN

r6
(p4 + q4) (2.24)

√−g4FµνFνρFρλFλµ = 4
e6UN

r6
(p2 + q2)2 (2.25)

√−g4∇µFνρ∇µFνρ = 12
e4U (r′ − rU ′)2

Nr4
(p2 + q2) (2.26)

We now proceed as in section 2.1, performing field redefinitions and integrations by parts

so that only powers of U ′ and r′ appear in the Lagrangian:

δr = x1
e2U

r
+ x2

e2Ur′2

r
+ x3

e4U

r3
(p2 + q2) +

(

−5

2
α + 4β

)

e2Ur′′

+(−α + 2β)e2U r′U ′ + (2α − 4β)e2UrU ′′ +

(

1

4
α − β

)

e2UrU ′2

δU = y1
e2U

r2
+ y2e

2UU ′2 + +y3
e4U

r4
(p2 + q2)

(

3

2
α − 3β

)

e2Ur′2

r2
+

1

2
α

e2Ur′U ′

r
− βe2UU ′′

δN = t1
e2U

r2
+ t2

e2Ur′2

r2
+ t3e

2UU ′2 + t4
e2Ur′U ′

r
+ t5

e4U

r4
(p2 + q2)

After dropping total derivatives the Lagrangian becomes

L = 2 + 2r′2 − 2r2U ′2 − e2U

2r2
(p2 + q2) + (−2α + 4β + 2t1)

e2U

r2
(2.27)

+(16α − 24β − 4x1 − 2t1 + 2t2)
e2Ur′2

r2
+ (−32α + 48β + 8x1 + 8y1 + 2t4)

e2Ur′U ′

r

+(16α − 24β − 4x1 − 8y1 + 2t1 + 2t3)e
2UU ′2

+

(

−6α +
28

3
β − 4

3
x2 − 2t2

)

e2Ur′4

r2
+

(

28α − 152

3
β +

8

3
x2 − 2t4

)

e2Ur′3U ′

r

+

(

38

3
α − 112

3
β +

16

3
y2 + 2t4

)

e2Urr′U ′3
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+

(

5

3
α +

8

3
β − 8

3
y2 + 2t3

)

e2Ur2U ′4 + (−25α + 60β − 4x2 + 2t2 − 2t3)e
2Ur′2U ′2

+

(

−1

2
t1 + 2t5 + x1 − y1 + 4z4

)

e4Ur4(p2 + q2)

+

(

−1

2
t2 − 2t5 + x2 − 12x3 + 12z3 − 28z4

)

e4Ur′2

r4
(p2 + q2)

+

(

−1

2
t4 + 16x3 + 16y3 − 24z3 + 48z4

)

e4Ur′U ′

r3
(p2 + q2)

+

(

−1

2
t3 + 2t5 − 4x3 − y2 − 16y3 + 12z3 − 20z4

)

e4UU ′2

r2
(p2 + q2)

+

(

−1

2
t5 + x3 − y3 + 4z1

)

e6U

r6
(p2 + q2)2 − 2z2

e6U

r6
(p4 + q4)

Contrary to the pure gravity case, it is no longer possible to cancel the higher-derivative

corrections by appropriate choices of the field redefinition ambiguities. A convenient choice

is to set

x1 =
9

8
α − 2

5
(7β + 8z1 + z3) ,

x2 = −9

4
α + 7β ,

x3 = − 7

32
α +

11

20
β − 4

5
z1 +

9

10
z3 − 2z4

y1 =
1

40
(5α + 32β + 128z1 + 16z3) ,

y2 = −13

2
α + 13β ,

y3 = − 1

20
(10α − 9β − 16z1 + 40z2 − 12z3 + 20z4 , (2.28)

t1 =
1

20
(85α + 16(−8β + 8z1 + z3)) ,

t2 = −3

2
α ,

t3 = −19

2
α + 16 ,

t4 = 11α − 16β ,

t5 =
1

80
(45α + 16β + 384z1 + 48z3 − 160z4)

leading to the Lagrangian

L = 2 + 2r′2 − 2r2U ′2 − e2U

2r2
(p2 + q2) +

(

13

2
α − 44

5
β +

64

5
z1 +

8

5
z3

)

e2U

r2
+ 4z2

e6U

r6
p2q2

+(−17α + 24β − 32z2)
e4Ur′U ′

r3
(p2 + q2) +

(

85

4
α − 30β + 32z2

)

e4UU ′2

r2
(p2 + q2)

This makes it clear that higher-derivative corrections can be eliminated only when the five

couplings in the bare Lagrangian satisfy the three relations

α =
24

17
β , z2 = 0 , 8z1 + z3 = −α/6 (2.29)
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It is of interest to study whether the Lagrangian (2.27) admits solutions with flat spatial

slices, as is necessary for the existence of extremal black holes. To answer this question, one

must check whether the choices N = 1/ρ2 and r = 1/ρ are consistent with the equations of

motion of N and r. Computation shows that this is case only when z2 = 0. This is in fact

part of the rationale for the choice (2.28), since, for general field redefinition ambiguities,

the conditions for the compatibility of flat slices are given by

z2 = 0

x1 =
1

40
(−265α + 488β + 20t4 − 40x2 − 128z1 − 16z3)

x3 = − 7

32
α +

11

20
β − 4

5
z1 +

9

10
z3 − 2z4 (2.30)

t1 =
33

4
α +

1

10
(−144β − 10t2 − 5t4 + 64z1 + 8z3)

t3 = −29

4
α +

4

5
(21β − 5t5 + 24z1 + 3z3 − 10z4)

satisfied by (2.28). Thus, we find that the assumption of the existence of extremal black

holes (more specifically, the consistency of the reduction to flat spatial slices) requires that

there should be no (F 2)2 term in the Lagrangian. It would be interesting to relate this

condition to the possibility of supersymmetrizing the Lagrangian (2.21).

3. Ehlers symmetry restored

One of the main results of the previous section is that there exists a choice of field redefini-

tions such that the one-dimensional Lagrangian describing four-dimensional gravity in the

stationary, spherically symmetric sector involves only powers of first derivatives. While this

choice ensures the absence of spurious modes and at the same makes the canonical quanti-

zation straightforward, it is also a particularly convenient frame to discuss the invariance

under the Ehlers symmetry Sl(2, R).

Indeed, returning to the Lagrangian (2.19) for Einstein-Liouville gravity with general

spatial slices, we may perform the Legendre transform4 over the NUT charge k, so as to

express the result as a function of U ′ and σ′. It is useful to change basis to

p = 2iU ′ + e−2Uσ′ , p̄ = −2iU ′ + e−2Uσ′ , (3.1)

where p = (dτ/dρ)/τ2 is (the pull back of) the left-invariant one-form on Sl(2, R)/U(1),

transforming by a phase under the action (2.8) of Sl(2, R),

p →
(

cτ̄ + d

cτ + d

)

p (3.2)

4Consistently with our perturbative analysis, one should retain only the branch where σ′ = −ke−4U/r2+

O(α′).
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This leads to the Lagrangian

L = 2 + 2r′2 +
1

2
r2φ′2 − 1

2
r2pp̄ +

(

9

4
α − 5β − 4γφφ

)

e2Uφ′2 +
1

4
βe2Ur2φ′4

+

(

13

4
αφ − 7βφ

)

e2Urr′φ′3 + (−9α + 20β − 4γφφ) e2Ur′2φ′2 + 16γφ
e2Ur′3φ′

r

+

(

−1

4
αφφ +

1

2
βφφ

)

e2Ur2φ′4+i

(

−5

8
α+

3

2
β

)

e2Urr′φ′2(p − p̄) + 4iγφe2Ur′2φ′(p − p̄)

+

(

−1

8
α +

1

4
β − 1

2
γφφ

)

e2Ur2φ′2(p2 + p̄2)

This Lagrangian can be made invariant under a discrete Sl(2, Z) subgroup of the Ehlers

symmetry provided any term am,ne2Upmp̄n is replaced by f1,m−n(τ, τ̄)pmp̄n, where f1,m−n

is a modular form of modular weight 0, U(1) charge m − n behaving as fm−n ∼ am,ne2U

in the limit where U → ∞. Such modular forms have already made an appearance in the

physics literature in discussions of the S-duality invariance of the type IIB string in ten

dimensions [25, 26] and can be expressed as generalized non-holomorphic Eisenstein series

fs,k(τ, τ̄ ) =
∑

(p,q)6=(0,0)

τ s
2

(pτ + q)s+k(pτ̄ + q)s−k
(3.3)

which satisfy f̄s,k = fs,−k. Under modular transformations the functions fs,k(τ, τ̄) trans-

form as:

fs,k(τ, τ̄ ) →
(

cτ + d

cτ̄ + d

)k

fs,k(τ, τ̄ ) (3.4)

The leading behaviour as U → ∞ uniquely selects s = 1. Using the identity

(k + 2iτ2∂τ ) fs,k = (s + k)fk+1 (3.5)

and the known expression for f1,0,

f1,0 = −π log(τ2|η(τ)|4) (3.6)

it is easy to express fs=1,k for relevant values5 of k in terms of the standard holomorphic

and almost holomorphic modular forms E4, E6 and Ê2 = E2 − 3
πτ2

:

f1,1 =
π2τ2

3
Ê2 , f1,2 =

π3τ2
2

18
(E4 − Ê2

2) (3.7)

f1,3 =
π4τ3

2

81
(2E6 − 3Ê2E4 + Ê3

2) , f1,4 =
π5τ4

2

324
(3E2

4 − 8Ê2E6 + 6Ê2
2E4 − Ê4

2) (3.8)

The large radius τ2 → ∞ expansion for these functions reads:

f1,k =
π2

3
τ2 −

π

k
+ O

(

e−τ2
)

, (3.9)

5The Eisenstein series f1,3 and f1,4 would become useful if we chose not to eliminate the cubic and

quartic terms in U ′ and k in (2.19).
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which also applies to k = 0 upon replacing 1/k by log τ2. The Lagrangian (3.3) can then

be covariantized under Sl(2, Z) into

Lcov = 2 + 2r′2 +
1

2
r2φ′2 − 1

2
r2pp̄ (3.10)

+

(

9

4
α − 5β − 4γφφ

)

f̃(1,0)φ
′2 +

1

4
βf̃(1,0)r

2φ′4

+

(

13

4
αφ − 7βφ

)

f̃(1,0)rr
′φ′3 + (−9α + 20β − 4γφφ) f̃(1,0)r

′2φ′2

+16γ′f̃(1,0)
r′3φ′

r
+

(

−1

4
αφφ +

1

2
βφφ

)

f̃(1,0)r
2φ′4

+i

(

−5

8
α +

3

2
β

)

rr′φ′2
(

f̃(1,1)p − f̃(1,1−)p̄
)

+ 4iγ′r′2φ′
(

f̃(1,1)p − f̃(1,−1)p̄
)

+

(

−1

8
α +

1

4
β − 1

2
γφφ

)

r2φ′2
(

f̃(1,2)p
2 + f̃(1,−2)p̄

2
)

with π2

3 f̃s,k = fs,k. It agrees with the Lagrangian (3.3) from dimensional reduction in the

limit τ2 = e2U → ∞, but differs by perturbative terms of order 1/τ2 and an infinite series

of exponentially suppressed terms of order e−mτ2±imτ1 The former can be attributed to

loops of gravitons running around the compact circle, while the latter can be naturally

attributed to Taub-NUT instantons6: the classical action of these gravitational self-dual

instantons, with topology R
3 × S1 at infinity, scales as the square of the radius of the

compact direction e2U = τ2 in Planck units, and includes a linear coupling to the NUT

scalar σ = τ1 proportional to the NUT charge.

Thus, we have given a precise realization of the proposal outlined in [23], in the toy-

model of Einstein-Liouville gravity compactified on a circle. It is clear that this procedure

works irrespective of the details of the higher-derivative action, provided one has managed

to express it in powers of first derivatives of U and σ only (the cone variable r is spectator

in this discussion). It would be interesting to study the fate of the SU(2, 1) symmetry of

the Einstein-Maxwell theory (or its extension to Einstein-Maxwell-Liouville theories) along

similar lines.

4. C-map with higher derivative corrections

In this section we give a preliminary discussion of the relation between the higher derivative

amplitudes F1 and F̃1 on the vector and hypermultiplet branch, focussing on the simplest

case of a single universal multiplet, nH = 1, and no vector multiplet nV = 0 in four

dimensions. After dimensional reduction to 3 dimensions, the moduli space consists of

two copies of the quaternionic-Kähler space SU(2, 1)/SU(2)×U(1), associated to U, ζ, ζ̃, σ

on the vector side, and ϕ,χ, χ̃, a on the hypermultiplet side, where S = a + ie−2ϕ and

Z = χ + iχ̃ are the two chiral multiplets in the universal hypermultiplet, ϕ being the

four dimensional dilaton. For simplicity, we shall also restrict to the Sl(2)/U(1) sector

6Contributions of Taub-NUT instantons to three-dimensional string theories have been analyzed in [29].
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of these two moduli spaces, retaining only (U, σ) and (ϕ, a). According to [27, 30], the

hypermultiplet branch in four dimensions may receive higher-derivative corrections of the

form

SH =

∫

d4x
√−g4

[∇µS∇µS̄

S2
2

+ α̃
∇µνS∇µνS + ∇µνS̄∇µν S̄

S2
2

]

(4.1)

where α̃ is in general a function of all hypermultiplets, receiving a one-loop contribution

plus instanton corrections. In line with our simplifying assumptions, and consistently with

the fact that it arises at one-loop, we shall assume that α̃ is just a constant. Moreover,

we assume that the R2 couplings in four dimensions are given by (2.1) where α is also a

constant, corresponding to a one-loop contribution in string theory, and β is set to zero.

Upon reducing on a stationary, spherically symmetric metric with flat spatial slices,

ds2 = −e2U (dt + k cos θdϕ)2 + e−2U

(

dρ2

ρ4
+

1

ρ2
dΩ2

2

)

(4.2)

and performing the now standard field redefinitions to eliminate powers of ϕ′′ and a′′, the

combined four-dimensional action (2.1) plus (4.1) reduces to a one-dimensional Lagrangian

of the form

L = −2U ′2 − 1

2
e−4Uσ′2 − 2ϕ′2 − 1

2
e4ϕa′2 (4.3)

+α e2Uρ4
(

U ′4 + e−8Uσ′4
)

+ α̃ e2Uρ4
(

ϕ′4 + e8ϕ a′4
)

where k was dualized into σ′. In writing (4.3), we have not paid attention to the detailed

form of the higher-derivative interactions, but only exhibited their exponential dependance

on U and ϕ. At tree-level, L is invariant under

U → −ϕ , ϕ → −U , σ ↔ a (4.4)

In type II string theory, this symmetry is realized by T-duality along the fourth circle,

which exchanges the vector and hypermultiplet branches in three dimensions. The point

to be emphasized now is that the symmetry (4.4) is broken by the higher-derivative in-

teractions in (4.3), unless both α and α̃ vanish. Indeed, a constant α would imply that

α̃ ∼ e−2ϕ−2U , which would correspond to a tree-level (∇2S)2 contribution which van-

ishes in the decompactification limit U → ∞. Similarly, a constant α̃ would imply that

α ∼ e−2ϕ−2U , again a tree-level R2 correction vanishing in the decompactification limit.

Either of these options would be disastrous. Moreover, a puzzling feature of (4.3) is that

the vector and hypermultiplet branches are not decoupled, in contrary to common belief.

These conundrums can be simply avoided by noting that, as shown in section 2.1,

there exists a field redefinition scheme which removes any moduli-independent R2 correc-

tion. Similarly, there should exist field redefinitions on the hypermultiplet side which allow

to remove any moduli-independent (∇2S)2 coupling. While it is not the goal of this pa-

per to perform a systematic analysis of this problem, we feel that the simple observation

above should serve as a word of caution when trying to understand the relation between

topological amplitudes on the vector and hypermultiplet side.
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